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Abstract

Purpose – The aim of the paper is to achieve textbook multigrid efficiency for some flow problems.

Design/methodology/approach – The steady incompressible Euler equations are decoupled into
elliptic and hyperbolic subsystems. Numerous classical FAS-MG algorithms are implemented and
tested for convergence. A full multigrid algorithm that costs less than 10 work units (WUs) is sufficient
to reduce the algebraic error below the discretization error. A new algorithm “NUVMGP” is
introduced. A two-step iterative procedure is adopted. First, given the pressure gradient, the
convection equations are solved on the computational grid for the velocity components by performing
one Gauss-Seidel iteration ordered in the flow direction. second, a linear multigrid (MG) cycle for
Poisson’s equation is performed to update pressure values.

Findings – It is found that algorithm “NUVMGP-FMG” requires less than 6 WU to attain the target
solution. The convergence rates are independent on both the mesh size and the approximation order.

Research limitations/implications – Lexicographic Gauss-Seidel using downstream ordering is a
good solver for the advection terms and provides excellent smoothing rates for relaxation. But it is
complicated to maintain downstream ordering in case the flow directions change with location.

Originality/value – Although the scope of this work is limited to rectangular domains, finite
difference schemes, and incompressible Euler equation, the same approaches can be extended for other
flow problems. However, such relatively simple problems may provide deep understanding of the ideal
convergence behavior of MG and accumulate experience to detect unacceptable performance and
regain the optimal one.

Keywords Fluid dynamics, Numerical analysis, Flow, Compressible flow

Paper type Research paper

1. Introduction
The multigrid (MG) approach is regarded as one of the most significant developments in
numerical analysis in the last 30 years. MG techniques (Brandt, 1977, 1985; Hackbusch
and Trottenberg, 1982; Briggs, 1987; Wesseling, 1992; Wesseling and Oosterlee, 2001)
have proved to be among the fastest solvers for linear and nonlinear elliptic problems.
The computational work required to solve a discrete problem containingN unknowns is
O(N). Moreover, full multigrid (FMG) algorithms can solve a general discretized elliptic
problem to the discretization accuracy in a computational work that is less than 10 work
units (WUs), where a WU is the operation count in one residual evaluation on the
computational grid. Such efficiency is known as textbook multigrid efficiency (TME)
(Brandt, 1998).

Computational fluid dynamics (CFD) gives rise to very large systems requiring
efficient solution methods. MG has contributed to many applications in CFD at an
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early stage. Over the years, MG has become closely intertwined with CFD, and has
become an ingredient in major CFD codes. The viscous flow around a complete aircraft
configuration and complex industrial flows in machinery are computed successfully
with MG using its new features; adaptively, parallel computing, and unstructured grids.

However, full TME has not yet been achieved in realistic engineering applications in
CFD in general. An important reason for this is that in CFD we often have to deal with
singular perturbation problems. This gives rise to grids with cells having high-aspect
ratios. Another reason is that the governing equations may show elliptic or parabolic
behavior in one part of the domain and hyperbolic behavior in another part. This
requires careful design of both the discretization and the solver. Therefore, extending
TME to solutions of CFD equations is a challenging task (Brandt, 1998; Thomas et al.,
1999; Brandt et al., 2002).

The TME methodology insists that each of the difficulties should be isolated, analyzed,
and solved systematically using a carefully constructed series of model problems.
According to Brandt (1985), one of the major obstacles to obtain better MG performance
for advection-dominated flows is that the coarse grid provides only a fraction of the
needed correction for smooth error components. This obstacle can be removed by
designing a solver that effectively distinguishes between the elliptic, parabolic, and
hyperbolic (advection) factors of the system and treats each one appropriately.

Recently, advanced MG flow solvers based on factorizable schemes have appeared
and can be categorized into three approaches.

One approach to separate the factors is the distributed relaxation method proposed
in Brandt (1985, 1998), Thomas et al. (1999), Brandt et al. (2002) and Diskin and
Thomas (2003). Distributed relaxation introduces a set of auxiliary local variables.
Using these variables, the relaxation equations form a triangular matrix with simple
elliptic or hyperbolic terms on the main diagonal. Efficient relaxation of such factors is
a much simpler task than relaxing the entire system of equations. The distributed
relaxation is usually applied throughout the entire computational domain having the
full effect away from boundaries in the regular flow field. The discrete equations near
the boundaries are usually different from the interior equations due to the coupling of
the relaxation equations near the boundaries. Diskin and Thomas (2003) presented an
approach to the derivation of discretization schemes for which TME can be achieved
by MG solvers with distributed relaxation. In particular, discrete schemes for the
nonconservative Euler equations have been derived and analyzed and TME has been
demonstrated in solving fully subsonic quasi-one-dimensional flow in a convergent/
divergent channel.

Another approach was presented by Ta’asan (1994). This approach is based on a set
of “canonical variables” which express the steady Euler equations in terms of elliptic
and hyperbolic partitions. Ta’asan used this partition to guide the discretization of the
equations. A staggered grid was used, with different variables residing at cell, vertex,
and edge centers. In this reference, it was shown that ideal MG efficiency can be
achieved for the compressible Euler equations for 2D subsonic flow using body fitted
grids. One possible limitation of the use of the canonical variables is that the partition
of the inviscid equations is not directly applicable to the viscous equations.

In the third approach (Roberts et al., 1997, 2002; Mohamed et al., 2005), a projection
operator is applied to the incompressible Euler system of equations resulting in a
Poisson equation for the pressure. Because the elliptic and advection parts of the system
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are decoupled, ideal MG efficiency can be achieved. Compared to the distributive
relaxation and the canonical variables’ approaches, this method is extremely simple. A
conventional vertex-based finite volume or finite difference discretization of the
primitive variables was used, avoiding the need for staggered grids. This simplifies the
restriction and prolongation operations, because the same operator can be used for all
variables. The limitation of this approach, however, is that it is not clear if or not it can be
generalized to the case of viscous compressible flows.

This approach was further generalized in Roberts et al. (2002) have combined this
approach with the accurate global far-field artificial boundary conditions ABCs and
computed the inviscid incompressible fluid flow around an airfoil. However, somewhat
slower convergence was observed in the solution of the full Euler system compared with
those obtained for pressure equation. This convergence deterioration was interpreted as
a result of the following approximation. For the purpose of constructing the relaxation
procedure for the full Euler system and due to the weak coupling between the pressure
equation and the rest of the system, the right-hand side of Poisson’s equation was
considered as a subprincipal term and hence was disregarded.

A particular formulation of the scheme and corresponding MG algorithm that employ
the factorization idea was proposed in Mohamed et al. (2005) which also contains more
details concerning the implementation of the scheme and some numerical computations
regarding the incompressible Euler equation discretized by first order finite difference
scheme on a rectangular domain.

In this paper, we extend the work in Mohamed et al. (2005) by introducing a second
order discretization scheme. However, our main contribution is to present a novel
approach “NUVMGP” that proved to be optimally efficient. In contradiction with
classical methods where the full Euler system is solved by MG, NUVMGP is an iterative
procedure in which the convection equations are solved on the finest grid, for a given
pressure gradient, by downstream Gauss-Seidel relaxation. Then the obtained velocity
components are used to define the right-hand side of Poisson’s equation, which is solved
by a linear MG cycle. We intend to work out all the details (from theoretical issues to
implementations) of many MG algorithms and then experimentally study the overall
performance for a series of simple problems that allow for the direct comparison with the
exact solution.

The rest of this paper is organized such that Section 2 presents the application of a
projection of the differential operator of the Euler equation yielding a Poisson’s equation
for pressure in place of the continuity equation. The required additional boundary
condition for pressure is derived from given boundary condition of the velocity
components. The first- and second-order discretizations of the resulting system of
differential equations are presented in Section 3. The details of the MG routines:
relaxation, restriction, and prolongation as well as description of used MG algorithms
including: V-, W-, FV-cycles, and the FMG algorithm are presented in Section 4. In
Section 5, the new algorithm “NUVMGP” is presented. It applies Newton’s method to
solve the momentum equations for the velocity components u, v (for given pressure
gradient) then solves Poisson’s equation (with the right-hand side as function of given
velocity) by MG for the pressure p. In Section 6, the robustness and efficiency of the
proposed methods is demonstrated by presenting convergence analysis of the results
obtained from solving the Euler equation on a rectangular domain where the exact
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solutions are known for three different examples. Finally, conclusions are given in
Section 7.

2. Formulation of the problem
The incompressible Euler equations in primitive variables in 2D are the two
momentum equations in x-, y-directions and the continuity equation:

u
›u

›x
þ v

›u

›y
þ

›p

›x
¼ 0; u

›v

›x
þ v

›v

›y
þ

›p

›y
¼ 0;

›u

›x
þ

›v

›y
¼ 0; ð1Þ

where u, v are the components of the velocity in the x- and y-directions, respectively,
and p is the pressure and the density is taken to be one.

Defining the advection operator as:

Q ; u›x þ v›y; ð2Þ

where ›x; ›y are the partial differentiation operators, the Euler equations can be
written as:

Lq ¼

Q 0 ›x

0 Q ›y

›x ›y 0

0
BB@

1
CCA

u

v

p

0
BB@

1
CCA ¼ 0: ð3Þ

Introducing the operator Q*, defined by:

Q*ð f Þ ¼ 2›xðuf Þ2 ›yðvf Þ; ð4Þ

a projection operator R is defined as:

R ¼

1 0 0

0 1 0

›x ›y Q*

0
BB@

1
CCA: ð5Þ

Applying the projection operator to the Euler equations yields:

~Lq ; RLq ¼

1 0 0

0 1 0

›x ›y Q*

0
BB@

1
CCA

Q 0 ›x

0 Q ›y

›x ›y 0

0
BB@

1
CCA

u

v

p

0
BB@

1
CCA ¼ 0; ð6Þ

or:

Q 0 ›x

0 Q ›y

0 0 D

0
BB@

1
CCA

u

v

p

0
BB@

1
CCA þ

0

0

›xQðuÞ þ Q*ðuxÞ þ ›yQðvÞ þ Q*ðvyÞ

0
BB@

1
CCA ¼ 0: ð7Þ

Simplifying the third row of the right matrix, Euler equations become:
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Q 0 ›x

0 Q ›y

0 0 D

0
BB@

1
CCA

u

v

p

0
BB@

1
CCA ¼

0

0

2uxvy 2 2uyvx

0
BB@

1
CCA: ð8Þ

The operator on the left-hand side of equation (8) is upper triangular. The pressure
satisfies a Poisson equation for which a conventional relaxation method, such as
Gauss-Seidel, can be applied. The momentum equations can be looked at as a standard
advection equation with known pressure gradients and hence upwind differencing
allows downstream relaxation to be used.

It is important to discuss the boundary conditions for the pressure. It is noticed that
the order of equation (8) (second partial derivatives for p) is higher than the original
system (1), where only first derivatives were required. Therefore, to ensure the
well posedness of the problem, an extra boundary condition is essential. This additional
boundary condition needs to be derived from the boundary conditions specified for the
original problem and, possibly, differential equations of the original system.

2.1 Treating the boundary conditions on a rectangular grid
In case of a rectangular domain, the boundary conditions can be treated as follows. At a
horizontal boundary y ¼ b, if the velocity components u(x, b) and v(x, b) are known,
then their x-derivatives ux and vx can be computed. So, py can be obtained using the
second momentum and the continuity equation as follows:

py ¼ 2uvx 2 vvy ¼ 2uvx þ vux: ð9Þ

Similarly, at a vertical boundary x ¼ a, if the velocity components u(a, y) and v(a, y) are
known, then their y-derivatives uy and vy can be obtained and hence a boundary
condition for pressure is derived using the first momentum and the continuity equation
as follows:

px ¼ 2uux 2 vuy ¼ uvy 2 vuy: ð10Þ

The additional conditions for pressure associated with other arbitrary boundary
conditions on even curved boundaries can be derived (Roberts et al., 2002).

3. Discretization of Euler equations on a rectangle
Building the discrete system for the Euler equations by the finite difference method on
a rectangular domain is considered and a uniform grid with mesh size h is assumed.

3.1 A first order scheme
The momentum equations are discretized using a standard first-order
upwind-difference approximation to the advection operator and the pressure
gradient. However, a second-order central-difference approximation is used to the
Laplacian operator. The discrete system for the Euler equations (equation (8)) at an
interior node (i, j) in a uniform mesh with mesh size h is given by:
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ui;j
ui;j2ui21;j

h
þ vi;j

ui;j2ui;j21

h
þ

pi;j2pi21;j

h
¼ 0

ui;j
vi;j2vi21;j

h
þ vi;j

vi;j2vi;j21

h
þ

pi;j2pi;j21

h
¼ 0

piþ1;jþpi21;jþpi;jþ1þpi;j2124pi;j
h 2 ¼ 2

ui;j2ui21;j

h
·
vi;j2vi;j21

h
2 2

ui;j2ui;j21

h
·
vi;j2vi21;j

h

9>>>>>>>=
>>>>>>>;
; ð11Þ

where si,j is the s-variable at node (i, j). Thus, equation (11) is a system of three
nonlinear algebraic equations in u, v, p at node (i, j) and some of its neighboring nodes.
This equation has to be modified at boundaries appropriately. For example, at a lower
horizontal boundary (Figure 1), if velocity components are specified, the value of py at
that boundary is computed according to equation (9). The discrete form of this
boundary condition is given by:

py ¼
pi;jþ1 2 pi;j21

2h
: ð12Þ

Equation (12) is used to substitute for the pressure at the ghost node (i, j 2 1) and the
third equation in equation (11) reduces to:

piþ1;j þ pi21;j þ 2pi;jþ1 2 2h · py 2 4pi;j
h 2

¼2
ui;j 2 ui21;j

h
·
vi;j 2 vi;j21

h

2 2
ui;j 2 ui;j21

h
·
vi;j 2 vi21;j

h
:

ð13Þ

3.2 A second order scheme
A second order upwind-difference approximation is obtained by substituting:

Sx ¼
3Si;j 2 4Si21;j þ Si22;j

2h
or Sx ¼

23Si;j þ 4Siþ1;j 2 Siþ2;j

2h
;

according to the flow direction for a variable s. Here, s stands for u, v in the advection
operator and the right-hand side of Poisson’s equation and for p in the momentum
equation. Thus, a second order discrete system for the Euler equations (equation (8)) at
an interior node (i, j) is given by:

Figure 1.
Node (i, j) on a horizontal
lower boundary

lower boundary

(i, j)

(i, j+1)

(i+1, j)(i–1, j)
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ui;j
3ui;j24ui21;jþui22;j

2h þ vi;j
3ui;j24ui;j21þui;j22

2h þ
3pi;j24pi21;jþpi22;j

2h ¼ 0

ui;j
3vi;j24vi21;jþvi22;j

2h þ vi;j
3vi;j24vi;j21þvi;j22

2h þ
3pi;j24pi;j21þpi;j22

2h ¼ 0

piþ1;jþpi21;jþpi;jþ1þpi;j2124pi;j
h 2 ¼ 2

3ui;j24ui21;jþui22;j

2h ·
3vi;j24vi;j21þvi;j22

2h

22
3ui;j24ui;j21þui;j22

2h ·
3vi;j24vi21;jþvi22;j

2h

9>>>>>>>=
>>>>>>>;
: ð14Þ

4. The multigrid technique for solving Euler equations
The FAS MG technique will now be implemented for solving the discretized Euler
equations. For convenience, first order discretization equations (equation (12)) are used
to describe the relaxation scheme. Application of the same approach to the second
order scheme (14) is straightforward. The main components of a MG V-cycle will be
discussed in details.

A basic step in developing an efficient MG algorithm is to design an efficient
relaxation procedure. For nonlinear problems, the relaxation updates to a current
solution approximation are usually computed through Newton iterations. The full
Newton linearization is a complicated operator, and its solution is expensive. Instead,
the principal linearization is adopted here (Hackbusch and Trottenberg, 1982). The
discretized highest derivative terms are considered principal and only their updates are
considered through relaxation.

Superscripts are used to distinguish between the variables that will be updated in a
current iteration m, and those that will be substitute their values from the previous
iteration m 2 1. But according to the point-wise relaxation in the downstream
direction, the values of u, v, and p at locations (i, j 2 1) and (i 2 1, j) would have been
modified, then the first order discrete system is linearized as:

um21
i;j

um
i;j
2um

i21;j

h
þ vm21

i;j

um
i;j
2um

i;j21

h
þ

pm21
i;j

2pm
i21;j

h
¼ 0

um21
i;j

vm
i;j
2vm

i21;j

h
þ vm21

i;j

vm
i;j
2vm

i;j21

h
þ

pm21
i;j

2pm
i;j21

h
¼ 0

pm21
iþ1;j

þpm
i21;j

þpm21
i;jþ1

þpm
i;j21

24pm
i;j

h 2 ¼ 2
um21
i;j

2um
i21;j

h
·
vm21
i;j

2vm
i;j21

h
2

um21
i;j

2um
i;j21

h
·
vm21
i;j

2vm
i21;j

h

� �

9>>>>>>>=
>>>>>>>;
: ð15Þ

For the purpose of relaxation, at the point (i, j), the first- and second-momentum
equations are used for updating the u- and v-velocity components, and the Poisson
equation is used for updating the pressure. In addition, to design a relaxation scheme
for all grids, general right-hand sides are introduced and equation (15) is rearranged as:

umi;j ¼
FUi;j · hþum21

i;j
· um

i21;j
þvm21

i;j
· um

i;j21
2pm21

i;j
þpm

i21;j

� �
um21
i;j

þvm21
i;j

� �
vmi;j ¼

FVi;j · hþum21
i;j

· vm
i21;j

þvm21
i;j

· vm
i;j21

2pm21
i;j

þpm
i;j21

� �
um21
i;j

þvm21
i;j

� �
pmi;j ¼

pm21
iþ1;j

þpm
i21;j

þpm21
i;jþ1

þpm
i;j21

2FPi;j · h 2
� �

4

9>>>>>>>>>=
>>>>>>>>>;
; ð16Þ
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where, for the computational grid:

FUi;j ¼ 0; FVi;j ¼ 0;

FPi;j ¼ 2
um21
i;j 2 umi21;j

h
·
vm21
i;j 2 vmi;j21

h
2

um21
i;j 2 umi;j21

h
·
vm21
i;j 2 vmi21;j

h

 !
:

ð17Þ

On the other hand, FUi,j, FVi,j, FPi,j are computed on coarser grids through the FAS
restriction subroutine.

The Gauss-Seidel relaxation is applied in lexicographic order in the downstream
direction. So this order is dependent on the boundary conditions. Downstream
marching is a very efficient solver that yields an accurate solution to a nonlinear
hyperbolic equation. For the convection terms in the momentum equations, a single
downstream sweep provides the exact solution to the linearized problem (first and
second equations in equation (15)) if the pressure gradient is exact.

It is important to notice that while equation (15) is used for computing relaxation
updates, the original formulation (13), with appropriate right-hand sides, is used for
computing residuals. Two methods of restriction are implemented in this work; the
trivial injection operator for the solution and the full-weighting operator for the
residual. For the prolongation, bilinear interpolation operator is adopted.

5. Multigrid basics and algorithms
First, we present a brief description of MG principles. To establish notation and
terminology, we start by formulating the basic two-grid algorithm. Consider a system
of m partial differential equations on a domain V discretized by a grid G h. The
resulting nonlinear algebraic system is denoted as:

N hðuhÞ ¼ bh: ð18Þ

Let there also be a coarse grid GH , Gh with fewer nodes than G h. Let its discrete
system be:

N H ðuH Þ ¼ bH : ð19Þ

5.1 The nonlinear full approximation scheme (FAS) multigrid method
The basic two-grid algorithm is given by:

Repeat until convergence:

begin

(1) Sn1 uh0; uh1=3; b
h

� �
; r h ¼ bh 2 N uh1=3

� �
;

(2) restrict uh1=3 and r h; bH ¼ N H R
_
uh1=3

� �
þ Rr h;

(3) solve uH1=3; u
H
2=3; b

H
� �

;

(4) uh2=3 ¼ uh1=3 þ P uH2=3 2 uH1=3

� �
;

(5) Sn2 uh2=3; uh1; b
h

� �
;

(6) uh0 ¼ uh1;

end.
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Step (1) (pre-smoothing) consists of n1 relaxations with some iterative method for the
fine grid equation (18) with initial iterate uh0 and result uh1=3 and computation of the
residual r h. In Step (2), R

_
is the fine to coarse grid restriction operator for variables

such that uH1=3 ¼ R
_
uh1=3 while R is restriction operator for residuals that need not be the

same as R
_

. In Step (3), the coarse grid problem is solved approximately by some
iteration method. In Step (4), the coarse grid correction is added to the current fine grid
iterate. Here, P is a prolongation. In Step (5), post-smoothing takes place by performing
n2 relaxations on the fine grid.

5.2 MG cycles and algorithms
The MG method is obtained if solution of the coarse grid problem in Step (3) is replaced
by g iterations with the two-grid method, employing a still coarser grid, and so on, until
the coarsest grid is reached, where the problem is solved exactly. With g ¼ 1 or g ¼ 2,
the V- or W-cycle is obtained, respectively.

Both the V- and W-cycles are shown in Figure 2 for a computational grid G4 and
three coarser grids. The number of relaxations on the downward and upward legs of
the cycles are denoted by n1 and n2, respectively, with n3 ¼ n1 þ n2. Also shown
another cycle termed the FV-cycle (Thomas et al., 1999) and a representation of the
FMG algorithm.

To estimate the computational work for different cycles, a WU is defined as the
operation count required to complete one relaxation sweep on the finest grid.

Figure 2.
Different MG cycles and

algorithms

(c) FV-cycle
(d) FMG

(b) W(ν1, ν2) -

ν1ν2 ν2

ν2

ν2

ν2

ν2

G1

G3

G4

G2 ν1

ν1

ν1

ν2

ν2 ν2

ν2

ν2

(a) V(ν1, ν2)-cycle

G1

G2

G3

G4
ν1

ν1

ν1

ν2

ν2

ν2
ν1

ν1

ν1 ν2 ν2

ν2

ν2 ν2 ν2

ν2

ν2

ν relaxations Exact solver

Prolongation of correction

Interpolation of solution

Restriction

ν
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A relaxation on the next coarser grid costs 1/4 WU in 2D and for mesh size ratio
H/h ¼ 2. Thus, one can easily estimate, in the limit of an infinite number of levels, the
computational work required for different cycles. Some of these estimates are
summarized in Table I.

In general, few MG cycles are sufficient to reduce the algebraic error norm of the
discrete system below the truncation error norm. However, starting the computations
by performing FMG procedure provides a good initial approximation for the solution
especially for nonlinear problems. In an FMG, the problem is solved on the coarsest
grid and the solution is interpolated to the next fine grid that can be solved
approximately by performing one V-cycle, and so on until the finest grid.

5.3 The two-steps iterative procedure – “NUVMGP” algorithm
The idea behind this algorithm was motivated by the following two observations.
First, when the momentum equations were solved on a computational grid for the
velocity components given the exact values for pressure, excellent results were
obtained by Newton’s iterations and also by the lexicographic Gauss-Seidel iterations.
One or two iterations were sufficient to obtain the exact solution. Second, it was
observed that the convergence rates of the MG cycles for the Euler’s equations were not
as good as those rates of Poison’s equation. This can be understood because the third
equation in Euler’s system is Poisson-like equation because its left-hand side is not a
known function but dependent on the current values of the velocity components.
Substituting exact values of velocity, the Euler system is solved by MG with ideal
convergence rates.

To regain the correspondence between equations and unknowns, let the Euler’s
system (equation (8)) be rewritten in the form of the following two subsystems:

Q 0

0 Q

 !
u

v

 !
¼

2�px

2�py

 !
; ð20Þ

Dp ¼ 2�ux �vy 2 2�uy �vx; ð21Þ

where Q is defined by equation (2) and an over bared variable corresponds to a good
approximation value of that variable. Given the pressure gradient in the right-hand
side of equation (20), then the first subsystem is associated with the velocity
components. In addition, given the velocity gradients, equation (21) is associated to the
pressure.

In the proposed iterative two-steps algorithm “NUVMGP”, an iteration corresponds
to a cycle and consists of two-steps. The first step is to use Newton’s method to solve
equation (20), on the computational grid, for u and v. Then as a second step, MG solves
equation (21) for p. Two Newton’s iterations are required to obtain accurate solution to

Cycle Cost (n1, n2) Cost (2, 1)

V-cycle ðn1 þ n2Þ 1 þ 1
4 þ

1
42 þ

1
43 þ · · ·

� �
¼ 4

3 ðn1 þ n2Þ 4

FV-cycle 2n2 þ ðn1 þ n2Þ
1
4 þ

2
42 þ

3
43 þ · · ·

� �
¼ 2n2 þ

4
9 ðn1 þ n2Þ 10/3

FMG n2 1 þ 1
4 þ

1
42 þ · · ·

� �
þ ðn1 þ n2Þ

1
4 þ

2
42 þ

3
43 þ · · ·

� �
¼ 4

3 n2 þ
4
9 ðn1 þ n2Þ 8/3

Table I.
Estimated computational
work for different cycles
represented in Figure 2
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the nonlinear subsystem equation (20). However, if a good initial guess is provided for
u and v, as would be the case when FMG is applied, one Gauss-Seidel relaxation is
sufficient to solve equation (20). With respect to Poisson’s equation, equation (21), only
one MG V-cycle is required. Figure 3 shows a representation for a “NUVMGP” cycle,
where G4 is the computational grid. The computational cost for this cycle is estimated
as follows. If a relaxation sweep of the full Euler’s system (three equations) costs one
WU then a reasonable estimation of the costs of a relaxation for equations (20) and (21)
are 2/3 and 1/3 WU, respectively. Thus, the cost of a “NUVMGP” cycle is:

2

3
þ

1

3
ðn1 þ n2Þ 1 þ

1

4
þ

1

16
þ

1

64
þ · · ·

� �
¼

2

3
þ

4

9
ðn1 þ n2Þ WUs:

If, n1 ¼ 2 and n2 ¼ 1; “NUVMGP” cycle costs 2 WU while the cost of the classical
V(2,1)is 4 WU.

6. Numerical results
The objective of the numerical examples presented in this section is to emphasize the
efficiency of the proposed discretizations, approaches and algorithms. The problem of
inviscid flow over a rectangular domain is considered. Figures 2(a)-(c) show a square
domain of unit length and boundary conditions for three different flows with known
solutions that satisfy equation (1). It is easy to prove that these problems have the exact
solutions:

ðaÞ u ¼ ey; n ¼ ex; p ¼ 2exþy; ð22Þ

ðbÞ u ¼ xþ 2; n ¼ 2 2 y; p ¼
2ðx 2 þ y 2Þ

2 2 2xþ 2y
; ð23Þ

ðcÞ u ¼ sin x sin y; n ¼ cos x cos y; p ¼
2ðsin2xþ cos2yÞ

2
: ð24Þ

The domain is discretized by nested sequence of uniform grids with mesh sizes
h ¼ ð1=2lÞ; l ¼ 1; 2; . . . ;L: For the coarsest grid G1, h ¼ 1=2, the grid has nine

Figure 3.
A representation

of “NUVMGP” cycle

G1

G2

G3

G4

A relaxation sweep for Eq.20

ν relaxation sweeps for Eq.21ν

ν1

ν1

ν1 ν2

ν2

ν2
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nodes while on the finest grid, h ¼ 1=2L, there are ð2L þ 1Þ2 nodes. The ordering of the
grid vertices was from the lower-left to the upper-right of the domain such that a
lexicographic Gauss-Seidel relaxation results in downstream ordering.

6.1 Convergence analysis for different discretization schemes
Both of the first- and second-order discretization schemes, described in Section 3, were
implemented in a FAS_V(2,1) MG cycle. That is, two relaxation sweeps are performed
on each grid before restriction to a coarser grid, and one relaxation sweep is performed
after prolongation to a fine grid. Thus, a single V(2,1) cycle costs approximately 4 WU.
The main objective here is to discuss the convergence behavior of this cycle based on
both of the algebraic error and discretization error.

The algebraic error is defined as the difference between the exact and approximate
solutions of the discrete problem. Practically, residual produced when the approximate
solution is substituted into the discrete system is computed rather than the algebraic
error since the exact solution of the algebraic system is generally unknown. On the
other hand, a fast residual convergence is considered to be an important monitoring
tool for the algebraic error.

The MG V(2,1)-cycle is used to solve the inviscid flow model problems (Figure 4) on
uniform computational grids G5, G6, G7, and G8, with mesh sizes h ¼ 1/32, 1/64, 1/128,
and 1/256, respectively. After each cycle, the L2- residual norm is computed for u, v,
and p.

In this subsection, we will present the results of problem (1), with boundary
conditions shown in Figure (4a) and exact solution given by equation (21). Also we will
discuss only the convergence behavior of the pressure p since similar behaviors were
obtained for u and v. For each computational grids GL, L ¼ 5, 6, 7, and 8, the results of
the L2 residual norm after each of ten V-cycles are summarized in Table II for the first-
and second-discretization schemes. The last two rows in the table contain the average
residual reduction per cycle in the first ten- and four-cycles denoted by m(1-10) and
m(1-4), respectively. One can easily conclude that the convergence rate is comparable
with those rates (m ¼ 0.125) of the V(2,1) cycle when applied to Poisson’s equation.
However, the convergence rate is not uniform. These rates are better in the first four
cycles. Another important observation is that the convergence rates are independent of
the mesh size h and the discretization scheme. Also it is noted that the residual norm
converges to the computational zero, or equivalently, it vanishes to the round-off error
level.

Figure 4.
The domain and boundary
conditions of the three
model problems

u =
 e

y ,  v =
1

p= –e(1+x)

u = 1, v = ex

p=
 –

e
(1+

y)

(a) Problem 1

u =
2 , v =

2-y

p=– (x2+4x–3) /2

u =x+2, v=2

p=
–

(y
2–

4y+
5) /2

(b) Problem 2

u=
0 , v=

cos y

p=– (sin2 x+cos21) /2

u=0, v=cos x

p=
–

(sin
2 1+

cos 2y) /2

(c) Problem 3
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The same results are shown in Figure 5(a) and (b) for the first- and
second-discretization schemes, respectively. The convergence behavior of the
Poisson’s equation, that resulted when the exact values of u and v were substituted
in the Euler system, is shown in Figure 5(b). It is observed that the convergence rate of
the MG cycles is more uniform for this case. However, it can be concluded that the
average convergence rate is the same for both the full Euler system and the Poisson’s
equation (Figure 5(b)). This optimal convergence rate was not obtained in Roberts et al.
(2002) where slower convergence was observed in the solution of the full Euler system
compared with those obtained for pressure equation. A reasonable interpretation was
given by the authors that this convergence deterioration results due to disregarding
subprincipal terms in the relaxation scheme.

In reality, the objective of MG algorithms is fast convergence to the solution of the
differential equations, not necessarily fast asymptotic residual convergence. The
natural solution tolerance is the discretization error.

The discretization error is defined as the difference between the exact solutions of
discrete and differential problems. To discuss the behavior of the proposed algorithm
and since the exact solution is known (equation (21)), the L2-norm of the difference
between computed solution after each cycle and the exact solution of the differential
system is calculated for the pressure and summarized in Table III, and also in Figure 6(a)
and (b) using the first- and second-order discretization schemes, respectively. These
results are presented for different computational grids with mesh sizes h ¼ 1/32, 1/64,
1/128, 1/256 on computational grids GL, L ¼ 5, 6, 7, and 8, respectively.

It is observed that, for a given computational grid GL, this computed norm decreases
uniformly through the first few cycles (four to ten cycles) then remains unchanged at
some value 1L corresponding to the discretization error at this grid. This means
that excess computation does not increase the desired accuracy. This is because the
exact solution of the discrete system has been reached (within algebraic error less than
the discretization error) after these few cycles.

It is observed (Table III) that the discretization error norm depends on both the
mesh size h and the order of approximation. To discuss this dependency, the values of
1L/1L21 are computed and reported in the last row of Table III for different grids. For
each of the first- and second-approximation schemes these values for all computational

Figure 5.
Convergence behavior of
the residual norm

(a) First- order discretization scheme
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grids are nearly constant and equal to 1/2 and 1/4, respectively, which is the theoretical
orders of approximations (O(h), O(h 2)).

To compare convergence behavior of the MG V-cycles for the Euler’s system to
attain the discretization error norm with that for Poisson’s equation, the same results
were obtained for Euler’s system on the computational grid G6 but after substituting
the exact values for the velocity components. This substitution reduces the Euler’s
system to the scalar Poisson’s equation. The obtained results are plotted in Figure 6(b)
showing ideal convergence rate and slightly less discretization error. This can be
understood since the third equation in Euler’s system, equation (20), differs from
Poisson equation in that its right-hand side is dependent on the velocity components.

6.2 Convergence analysis for different cycles
In this study, problem (1) is solved on computational grid G6 using different cycles,
namely the V(2,1), W(2,1), and NUVMGP-V(2,1)cycles. Results of the L2 residual norms
and discretization error norms for u, v, and p are computed after each of ten cycles and
shown in Figure 7(a) and (b) for the velocity components and for p, respectively. The
first observation is the similar convergence behaviors of each cycle for the velocity
components and pressure. It is also observed that although the convergence of the
residual norm is better for the V-cycle than that of the W-cycle, their convergence to
the discretization error is identical. Finally, one can easily conclude that
NUVMGP-V-cycle is the most efficient one. It has the same convergence behavior of
the classical V-cycle but it costs approximately half the computations required for the
V-cycle as discussed in the previous section.

To demonstrate the robustness of NUVMGP-V cycle, its convergence behavior for
residual norms and to the discretization error is plotted for different computational
grids in Figure 8(a) and (b) for the pressure and velocity components, respectively.

It is noticed that no plots were shown for the residual norm of the velocity
components in Figures 7(a) and 8(b). That is simply because in the NUVMGP
algorithm, each cycle represents an iteration that consists of two steps. The first is the
solution of the momentum system for the velocity components, given the current
pressure gradient, on the computational grid. This solution process results in trivial

Figure 6.
Convergence behavior
of the discretization error
norm
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residual for the current system. The second step is approximating the pressure by
performing a V-cycle for the Poisson’s equation.

6.3 The full multigrid (FMG) algorithm
The cycling algorithms presented and tested in previous sections are easily converted
into FMG programs. The main difference is that instead of starting with an arbitrary
approximation on the finest grid, the first approximation is provided by an interpolation
from a coarse-grid solution. A representation of FMG is shown in Figure 2(d) for a
computational gridG4 and three coarser grids. The FMG is implemented using a bilinear
interpolation routine as well as the V-cycle routines. Although the computational cost of
FMG is approximately equal to that of a single V-cycle, it reduces the algebraic error
of the discrete system and hence less number of V-cycles is required. The performance of
the V(2,1)-cycling starting with and without FMG is shown in Figure 9. In Figure 9(a)

Figure 8.
NUVMGP-V cycles
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the L2 residual norm is plotted for the velocity components and pressure. A considerable
reduction in the initial residual norm is observed when starting the cycling by
performing FMG then due to the same convergence behavior of the next V-cycles, the
two curves seem to be parallel. In Figure (9b), the L2 norm of the difference between the
exact and computed solutions after each cycle is plotted. Starting by FMG provides
excellent results. Only one V-cycle is required to reach the discretization error level
costing less than 10 WU compared with 40 WU required for the classical V-cycling.

6.4 FMG-NUVMGP algorithm
It is expected that combining FMG and NUVMGP algorithms would result in an
optimally efficient solver. First, the computational work of these methods will be
discussed in some details. Since the FMG method acts on the full Euler’s system (the
three equations), it costs 8/3 WU (Table I). With respect to the NUVMGP-FV(2,1)-cycle,
the cheap Gauss-Seidel relaxation is used in place of the Newton iteration for the
solution of the two-momentum equations on the finest grid. This would cost 2/3 WU.
According to the NUVMGP method, the FV(2,1)-cycle acts on only a single, Poisson’s
equation, rather than the full system and thus reduces its cost to one-third. Thus, the
total cost of NUVMGP-FV(2,1)-cycle (Table I) is 2/3 þ (10/3)/3 ¼ 16/9 WU.

To study the performance of such algorithm the FMG (Figure 2(d)) is implemented
followed by 12 NUVMGP FV(2,1)-cycles to solve the problem on different grids GL,
L ¼ 5, 6, 7, 8. The results are shown in Figure 10(a) for the residual norm versus WUs
and prove the convergence of the residual norm for both velocity components v and
pressure p to the computational zero. In Figure 10(b), the norm of the difference
between the exact and computed solution of pressure p at the end of each cycle is
plotted. It is important to notice the fast convergence to the discretization error. Only
6 WU (FMG then 2 FV(1,1) cycles) are sufficient to solve the problem. More important
is that this cost is independent of the mesh size.

To demonstrate the effect of FMG in providing good approximation of the discrete
system, the algebraic error is estimated as the difference between the computed
solutions just after FMG and the exact one (obtained at the end of the 12 V-cycles). Also
the discretization error is computed as the difference between the exact solutions of the
continuous and discrete problems. These results are summarized in Table IV for
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different computational grids where discretization error norm and the ratio of the
algebraic to discretization error norms are given for velocity components and pressure.
The results demonstrate the ability of FMG to reduce the algebraic error below the
discretization error.

6.5 Convergence rates for different problems
Although all results presented until now were obtained for problem (1), the other two
problems in Figure 4 shows similar results. A sample comparison is shown in
Figure 11, where the convergence behaviors of the residual norm and to the
discretization error norm for the three problems are plotted for the velocity component
v and pressure p. The FMG-NUVMGP approach is applied on computational grid G6.

7. Conclusions
A MG method for solving the incompressible Euler equation has been developed by
exploiting factorizability of the governing differential operator. Treating each of the
factors appropriately, optimal convergence rates have been attained. First- and
second-order discretization schemes are presented. No artificial viscosity is introduced
in the discretization. Elements of the full approximation scheme MG algorithm,
including relaxation, residuals, restriction, prolongation, cycling, and FMG routines
are presented. A novel algorithm “NUVMGP” has been developed and proved to be
optimally efficient. The convergence rates of the algebraic and discretization error are
tested for different algorithms. The main conclusions are:

Figure 10.
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Discretization error norm
Algebraic/descretization error

norms
v p v p

L ¼ 5 (h ¼ 1/32) 4.61 £ 1024 1.93 £ 1023 8.19 £ 1022 3.70 £ 1022

L ¼ 6 (h ¼ 1/64) 1.20 £ 1024 4.87 £ 1024 7.97 £ 1022 4.26 £ 1022

L ¼ 7 (h ¼ 1/128) 3.07 £ 1025 1.22 £ 1024 1.35 £ 1021 1.33 £ 1021

L ¼ 8 (h ¼ 1/256) 7.75 £ 1026 3.06 £ 1025 2.46 £ 1021 2.05 £ 1021

Table IV.
Algebraic and

discretization error norms
after one FMG-NUVMGP

cycle
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Figure 11.
FMG-NUVMGP
convergence behavior
for different problems
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. After few (four to ten) MG V(2,1)-cycles that cost (16-40 WU), the algebraic error
is reduced substantially below the discretization error.

. Starting by FMG reduces the algebraic error below the discretization error
making the target solution obtainable after one V-cycle (with total cost less than
10 WU).

. Algorithm “NUVMGP-V” consumes WUs less than half that required by
classical V-cycle.

. Algorithm “NUVMGP-FMG” requires less than 6 WU to attain the target
solution.

. The convergence rates of residual norm are independent of the mesh size and the
approximation order.

. Lexicographic Gauss-Seidel using downstream ordering is a good solver for the
advection terms and provides excellent smoothing rates for relaxation. But it is
complicated to maintain downstream ordering in case the flow directions change
with location.

. Although the scope of this work is limited to rectangular domains, finite
difference schemes, and incompressible Euler equation, the TME is attained and
even improved. Moreover, such relatively simple problems may provide deep
understanding of the ideal convergence behavior of MG and accumulate
experience to detect unacceptable performance and regain the optimal one.
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